Reg. No: Image: No: SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech II Year I Semester Regular & Supplementary Examinations March-2023 ANALOG ELECTRONIC CIRCUITS						
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech II Year I Semester Regular & Supplementary Examinations March-2023						
(AUTONOMOUS) B.Tech II Year I Semester Regular & Supplementary Examinations March-2023						
B.Tech II Year I Semester Regular & Supplementary Examinations March-2023						
(Electrical and Electronics Engineering)						
Time: 3 hours Max. Marks: 6	8					
(Answer all Five Units $5 \ge 12 = 60$ Marks)	0					
UNIT-I						
1 a Define feedback and illustrate the basic concept of Feedback with suitable CO1 L2 block diagram.	6M					
b A voltage series negative feedback amplifier has a voltage gain without CO3 L2	6M					
feedback of A=500, input resistance Ri=3 k Ω , output resistance Ro=20 k Ω						
and feedback ratio β =0.01.Calculate the voltage gain Af, input resistance and						
output resistance of the amplifier with feedback.						
OR						
2 a Show that how a negative feedback reduces gain of an amplifier. CO1 L1	6M					
b An amplifier has open loop gain 1000 and feedback ratio of 0.04, if the open CO3 L3	6M					
loop gain changes by 10% due to temperature, find the percentage change in						
the gain of the amplifier feedback.						
UNIT-II						
3 a Define Oscillator and explain its principle of operation.CO1L2	6M					
b In a transistorized Hartley, oscillator the two inductances are 2mH and CO4 L4	6M					
20μ H.While the frequency is to be changed from 950 kHz to 2050 kHz.						
Calculate the range over which the capacitor is to be varied.						
OR						
4 a Determine the condition for sustained oscillations for an RC phase shift CO2 L3 Oscillator with necessary circuit diagrams.	6M					
b Draw the circuit diagram of Colpitts oscillator using BJT and derive the CO1 L1	6M					
expression for frequency of oscillations	OIVI					
UNIT-III						
	CNI					
	6M					
b Derive the expression for gain of Differential amplifier with two op-amps. CO5 L2 OR	6M					
6 a What is voltage follower? What are its features and applications? CO1 L1	6M					
b Draw and explain frequency response of practical op-amp. CO1 L2	6M					

	Ç	P. Code: 20EC0446	R	20	
		UNIT-IV			
7	a	Design and explain the operation of inverting summing amplifier.	CO3	L3	6M
	b	Draw the input-output waveforms and frequency response of integrator	CO1	L1	6M
		OR			
8	a	Draw an op-amp circuit whose output is $Vo=(V3+V4)-(V1+V2)$.	CO1	L3	6M
	b	Derive the equation for frequency of oscillation of astable multivibrator	CO4	L3	6M
		using op-amp.			
		UNIT-V			
9	a	Define active filter and give its characteristics.	CO2	L4	6 M
	b	The basic step of a 9 bit DAC is 10.3 mV. If "000000000" represents 0 V.	CO4	L1	6M
		What output is produced if the input is "101101111"?			
		OR			
10	a	Explain the first order high pass butter worth filter with a neat circuit	CO2	L2	6M
		diagram.			
	b	Design an inverted R-2R ladder DAC for digital input word 001.	CO2	L2	6M

*** END ***

b Draw the checkle diagram of Colpities oscillator using BM